
A discourse on the (in)security of Diffie-Hellman

J.D. Allersma
Open Universiteit

Heerlen
jan.allersma@student.ou.nl

ABSTRACT
The Diffie-Hellman protocol is used for exchanging keys be-
tween two machines. However, using Diffie-Hellman can be
insecure: an NFS algorithm can be used to break Diffie-
Hellman and a Logjam attack can be to attack a session in
which Diffie-Hellman is used. This paper outlines the impact
of those vulnerabilities, based on two papers. One paper
outlines the vulnerabilities on Diffie-Hellman, whereas the
other paper provides a proposal to modifiy Diffie-Hellman
with use of the Blowfish algorithm in such a way that it
provides protection against Logjam attacks. At the end of
this paper we give our view on the impact of the Logjam
attack and NFS algorithm, based on those two papers.

Keywords
Diffie-Hellman, Logjam, Blowfish, Vulnerable, Impact

1. INTRODUCTION
Diffie-Hellman is a protocol to exchange keys for establish-
ing a connection with encrypted traffic [2] [1]. A study from
2015 has shown that using Diffie-Hellman as key-exchange
protocol can be dangerous, as it can possibly be broken with
a Logjam attack or get compromised with an NFS algo-
rithm. This does imply that there is an insecurity for a lot
of HTTPS servers. IKE, SSH and Mailserver (SMTP and
IMAPS) protocols using DH-768 or DH-1024 can be com-
promised when state-level resources are within reach. [2]

There are some measures that could taken to make breaking
the Diffie-Hellman protocol more time-consuming and hope-
fully infeasible, such as using a prime number p that has
the property as defined with equation (5). Another measure
could be not to use commonly used prime numbers. Another
measure that could be taken when using Diffie-Hellman to
set up TLS, is to disable support for legacy export-grade
Diffie-Hellman.[2]

Adrian et al.[1] propose using a modified version of Diffie-
Hellman. Essentially, the algorithm that breaks Diffie-Hellman
needs to find a certain prime number. The modified Diffie-
Hellman protocol uses messages instead of prime numbers,
making the algorithm useless, since there is no more prime
number to be found.

This paper is a discourse. In this paper, the findings of
Adrian et al. [2] and Adrian et al. [1] are examined. We fo-
cus on the impact of Logjam attacks and the NFS algorithm.
More specifically, we focus on what prevention measures are

available and how many servers are vulnerable to this attack.

First, we give a brief summary of both papers, describing
how the Diffie-Hellman protocol, the NFS algorithm and
Logjam attack work, what the impact of the Logjam attack
is as of 2015 and how a Logjam attack can be prevented.
Secondly, we give an analysis of both papers in which we
provide our critical view on the impact on Diffie-Hellman’s
insecurities based on both papers. We make clear what both
papers outline and what the difference is between both pa-
pers. Lastly, we draw our conclusions based on our analysis
and give suggestions for further research about the impact
on Logjam attacks.

2. ANALYSIS
2.1 Vulnerabilities
2.1.1 Diffie-Hellman explained
Adrian et al.[2] show that the Diffie-Hellman protocol has a
flaw, which has serious impact on 8.4% of Alexa Top Mil-
lion HTTPS websites. Those websites support the Diffie-
Hellman protocol with 512-bit size. The flaw can be ex-
ploited to compromise encrypted data that is exchanged
between machines that use DH-512 to exchange keys for
HTTPS traffic and allow legacy export-grade Diffie-Hellman1.
Key exchange is done as follows: two machines agree on a
prime number p and a generator number g. The first ma-
chine has a secret number a and the second machine has a
secret number b. The first machine sends number A, calcu-
lated by

ga mod p (1)

to the second machine. The second machine sends number
B, calculated by

gb mod p (2)

to the first machine. Lastly, both machines calculate key K
by resolving

gab mod p (3)

An attacker can compromise encrypted data by finding the
shared secret, which can be found by finding the discrete log
x from

y = gx mod p (4)

1This allows to use a a group of ciphersuites that is weaker
than the regular ciphersuites[2]



The log can be obtained using a number field sieve (NFS)
algorithm. This algorithm does some precomputing for p.
The NFS algorithm consists of four stages: polynomial se-
lection, sieving, linear algebra and descent. The first three
stages are part of the precomputation. Only the last stage is
used to find an individual discrete log x. How long it takes
for the algorithm to calculate the discrete log x, depends on
the prime number p that is used. If p has the property

p− 1 = 2q (5)

with q being some prime number, the time to find discrete
log x takes so long that it is impractical to use the NFS
algorithm. Therefore, Diffie-Hellman can be safe to use, as
long as p has the above mentioned property.[2]

2.1.2 Diffie-Hellman’s Insecurities
Finding the discrete log x can take a lot of time, so for a
successful attack, possible discrete logs have to be precom-
puted first, which requires p as input. Normally, this takes
a lot of time if every server using Diffie-Hellman would use
a different p. However, most servers use the same prime
numbers. Of all Alexa Top one million domains that sup-
port 512-bit prime numbers as p. A group of 82% of those
domains use the same prime number. A second group of
10% uses the same number and the other 8% use a total of
463 distinct prime numbers. Therefore, precomputing with
prime numbers of those two domain groups would cover 92%
of all Alexa top one million domains that support DF-512.[2]

Adrian et al.[2] take it a step further to see if the NFS algo-
rithm can be used to break Diffie-Hellman with longer key
sizes (768 and 1024 bits) and how much resources it would
take to compromise, for example, IKE, SSH, HTTPS and
SMTP. They conclude that theoretically with the comput-
ing power academics have within reach, DF-768 could be
broken in a reasonable amount of time. NSA has theoreti-
cally enough resources to break DF-1024. Table 1 shows the
amount of servers that are vulnerable if an attacker has a
certain computing power to break Diffie-Hellman. For ex-
ample, there are 98.500 servers of the Alexa Top one Million
domains that are vulnerable to an attack if an attacker has
the resources to precompute one 1024-bit Oakley group2.
The percentage 17.9% represents the amount of servers that
are vulnerable compared to the amount of servers that have
been examined. Furthermore, there has been made a differ-
ence between ’HTTPS Top 1M w/ Active Downgrade’ and
’HTTPS Top 1M’. The difference Active Downgrade and
regular HTTPS is that with Active Downgrade the Logjam
attack can be used. This means three things:

• Instead of precomputing primes, discrete log x is being
found nearly real-time.

• Legacy export-grade Diffie-Hellman is used.

• Obviously, the handshake for an HTTPS takes longer
because discrete log x has to be computed in the mean-
time.

2An Oakley group is a set of prime numbers which can be
used as prime number p in Diffie-Hellman [2]

However, Adrian et al. tried to use an Logjam attack with
Active Downgrade and it took 70 seconds to find the secret
gab. We will discuss this further in the Impact section

Furthermore, the impact on Mailservers is depicted in Table
2.

Based on these findings, the outside world responded: mod-
ern browsers as of 20153 accepted prime numbers p of 512-bit
size (and Safari even a less bigger size). After those findings
of Adrian et al, [2] have been reported, all those browsers
(and OpenSSL) are at least expected that they accept at
least 1024-bit sizes prime numbers. Akamai does not sup-
port for export ciphersuites and many TLS-developers plan
to gracefully reject negotiations when p is lower than 2048-
bits.[2]

2.2 Prevention
2.2.1 The protocol
Adrian et al. [1] offer a modified version of the Diffie-
Hellman protocol, which is invulnerable to Logjam attacks.
According to them, a Blowfish algorithm can be used in com-
bination with Diffie-Hellman to prevent a successful Logjam
attack. Even though there is a stronger algorithm to use, the
Rijndael algorithm, Blowfish is favored because of its speed.
The Blowfish algorithm works as follows:
The Blowfish algorithm chops messages in blocks of 64 bits,
a block is called y. Messages can have a size that is not a
multiple of eight bits. In that case, padding will be used to
give messages an appropriate length for generating blocks.
Then P will be created, a collection of 18 32-bit-sized blocks.
And four S blocks will be created, each holding 256 blocks.
S will be used for the F function [3], which will be used later
on. Lastly K will be created, which is a collection of 32-bit-
sized blocks from a 32-bits to 448-bits long sequence.[3] The
first block of P (which we call P1 ) is XORed with the first
block of K, resulting in P’1. Then the second block of P
(P2 ) is XORed with the second block of K, resulting in P’2
and so on. If there are no more blocks in K, but still blocks
in P that needs to be processed, the first block of K will be
used again, then the second block and so on. Then each y
will be split in two 32-bit-sized blocks (yL and yR). Then
four actions will done:

• yL is XORed with P’n (with n being the nth iteration).

• The XORed product yL’ is processed by the F func-
tion.

• yL’ is XORed with yR, resulting in yR’.

• The values of yL and yR’ are swapped, so yL has the
value or yR and yR’ has the value of yL.

These four actions will be done in a total 16 rounds. After
16 rounds, P’17 is XORed with yL and P’18 is XORed with
yR. Finally, yL and yR have to be reunited again as y and
all blocks y have to be reunited to single encrypted mes-
sage.[1] The modified Diffie-Hellman protocol is as follows:

3Modern browsers include Internet Explorer, Google
Chrome, Mozilla Firefox, Opera and Safari



Table 1: Vulnerable servers per protocol and group of primes. Table based on Adrian et al. [2]
All 512-bit groups All 768-bit groups One 1024-bit group Ten 1024-bit group

HTTPS Top 1M w/ Active Downgrade 45.100 (8,4%) 45.100 (8,4%) 205.000(37,1%) 309.000(56,1%)
HTTPS Top 1M 118 (0,0%) 407 (0,1%) 98.500(17,9%) 132.000 (24,0%)
IKEv1 IPv4 64.700 (2,6%) 1.690.000 (66,1%) 1.690.000 (66,1%)
IKEv2 IPv4 66.000 (5,8%) 726.000 (63,9%) 726.000 (63,9%)
SSH IPv4 3.600.000 (25,7%) 3.600.000 (25,7%)

Table 2: Mailserver protocols and their support for security protocols.Table based on Adrian et al.[2]
TLS Diffie-Hellman Legacy export-grade Diffie-Hellman Ten most common 1024-bit groups

SMTP 50,7% 41,4% 14,8% 15,5%
IMAPS 100,0% 75,0% 8,4% 5,4%

Two machines agree on message M. The first machine has
secret key a’ and the second machine has secret key b’. The
first machine sends cipher A’, which is calculated by the
equation

E(M,a′) (6)

Where E is a function to encrypt M using a modified Blow-
fish algorithm as described by Adrian et al. [1]. We do not
go in further detail about these modifications, as the intent
was to give a basic impression on how E works.

Next, the second machine sends cipher B’ calculated in a
similar fashion:

E(M, b′) (7)

Once both machines received a cipher C, the machines re-
solve the same key K’ with their respective secret key S,
using the following equation:

E(C, S) (8)

2.2.2 Applicability
A crucial part of a Logjam attack is finding discrete log x,
as mentioned earlier. A precondition is that p in equation
(4) has to be a prime number. However, since the modified
Diffie-Hellman protocol uses M instead of a prime number
p, equation (4) does not apply to the modified protocol4,
and is therefore protected against Logjam attacks. [1]

2.3 Impact
Surprisingly, the research conducted by Adrian et al. [1] is
a reaction to findings of Adrian et al. [2]. In fact, Adrian
et al. [1] uses findings of Adrian et al. [2] as reference and
basis for their research. However, Adrian et al. [1] focuses
on the prevention of Logjam attacks and the performance
of their proposed algorithm, but pay little attention to the
impact that could be reduced by adapting their algorithm
instead of the original Diffie-Hellman protocol. It would be

4As long as M is not a prime number

interesting to examine whether the NSA could break the
algorithm proposed by Adrian et al. [1] as opposed to the
original protocol, which theoretically could be broken by the
NSA [2].

When looking at the research methods of both papers, Adrian
et al. [2] scan a random 1% of servers in the IPv4 address
space to indicate how susceptible servers are to be compro-
mised (for HTTPS, IKE, and SSH protocols) and to deter-
mine which security protocols servers support (for SMTP
and IMAPS protocols). We think that using a random 1%
of servers is a valid way to represent all active servers is the
IPv4 address space.

Furthermore, Adrian et al. [2] use the Alexa top 1 million
HTTPS domains as subject to see how many servers are vul-
nerable to the Logjam attack. From the paper it is not clear
why this data set is used. It could be used as representation
for all active servers. It could also be possible that the data
set is used as representation for websites that have been vis-
ited the most, which in turn make Alex top 1 million servers
that are vulnerable to a Logjam attack have a bigger im-
pact security-wise than lesser visited websites. More clarity
about why this data set is used would give more insight in,
for example, what further research should be conducted to
get a better understanding on the Logjam’s impact.

Moreover, Adrian et al. [1] do mention the impact of the
Logjam attack by stating how many HTTPS servers are vul-
nerable to the attack. This fact is taken from Adrian et al.
[2]. The paper about the Logjam attack and its prevention
differ three years in date of publication. One could argue
that this statistic used by Adrian et al. [1] (the amount of
vulnerable HTTPS servers) is rather outdated because mea-
sures could have been taken in the meantime (e.g. not sup-
porting Diffie-Hellman anymore) to protect the servers from
a Logjam attack. However, Adrian et al. [1] use a statistic
from a more recent study as well, of which one could con-
clude that the Logjam attack is still a problem for a lot of
websites. Even though one fact could give some indication
on the impact of the Logjam attack, deeper inspection of
the vulnerability’s cause is neglected by Adrian et al. [1]. It
is important to see whether servers still use the same prime
numbers for Diffie-Hellman as this results in computation
time to find discrete log x [2]. In a more general sense,
statistics given by Adrian et al. [2] should be revised.



Adrian et al. [2] state in their paper’s introduction that
”Diffie-Hellman is commonly implemented and deployed with
these protocols and find that, in practice, it frequently offers
less security that widely believed”. Adrian et al. give two
reasons for this, primely that a lot of servers support Diffie-
Hellman key exchange that is too easy to break as of 2015.
And secondly, that often the same parameters for Diffie-
Hellman are used. Concluding that people believe that their
’secure’ server is actually insecure, should not be derived
from those two reasons. There could be numerous others
reasons why people use a weak Diffie-Hellman protocol or
use often used parameter. People might, for example, prefer
weaker Diffie-Hellman protocols for their server to be more
accessible for more devices. Or people use often used same
parameters because of a lack of knowledge that other pa-
rameters can be used instead of the default ones. Or simply
because they do not care about their security policy.

In section 2.2, we mentioned that the outside world re-
sponded on the findings of Adrian et al. [2]. The response
of browsers was to enforce a bigger bitsize of ciphersuites.
This is a very pragmatic solution for mitigating risks: let
all (modern) browsers enforce stricter policy by only accept-
ing stronger Diffie-Hellman implementations, making a Log-
jam attack more time costly and hopefully infeasible. Even
though this suggestion does not prevent every Logjam at-
tack from being successful, it does require only browsers to
do something. This makes the suggestion more likely to
be realised as opposed to other suggestion in which servers
have to change their key-exchange protocol to, for example,
stronger Diffie-Hellman groups based on elliptic curves [2] or
a modified Diffie-Hellman protocol as proposed by Adrian et
al. [1].

Lastly, a Logjam attack with Active Downgrade takes an
average 70 seconds to complete[2]. When indicating the im-
pact of a Logjam attack, it is important to consider the
time it takes for the computation to complete. This is im-
portant because if a handshake takes too long, a user could
get impatient and stop the request before the computation
is finished, therefore prevent an attack from happening. We
think it would be good if Adrian et al. [2] had mentioned
this.

3. CONCLUSIONS AND FURTHER RESEARCH
Adrian et al. [2] give quite an impression on the impact of
Diffie-Hellman’s vulnerabilities. This is done in numbers of
vulnerable servers to the NFS algorithm and the Logjam at-
tack. Additionally, it gives insight on what the outside world
(modern browsers, Akamai and TLS developers) does with
the findings of Adrian et al. [2]. In contrast, Adrian et al.
[1] give an proposal on how to prevent Logjam attacks, but
give barely information on their proposal’s impact: Adrian
et al. [1] show that if servers would use their proposal, the
servers are protected against NFS and Logjam attacks, but
no insight is given on how many servers or key figures, such
as developers of OpenSSL or Apache, actually do something
with the proposal. Therefore, this subject is underexposed
and some additional research could be conducted to provide
insight in the impact of the proposal.

There is some presence of facts about the impact on the Log-
jam attack and the NFS algorithm. The facts that are given

are, as of writing, slightly outdated. Further research about
the current state of vulnerable servers would be appropriate.

Adrian et al. [2] conclude that DH-768 can be broken with
academic power and DH-1028 theoretically with state-level
resources. This conclusion has been drawn in 2015 [2]. As of
writing, seven years later, one could question whether those
conclusions are still relevant nowadays. Maybe DH-1024 can
already be broken with the computing power of a regular
PC. New research could be conducted to verify whether the
conclusions of Adrian et al. [2] are still valid nowadays.

Furthermore, Adrian et al. [1] propose to use the Blowfish
algorithm to encrypt messages as defined with equation (6)
and (7). The reason for using Blowfish instead of Rijndael
is that Blowfish is faster and more reliable than Rijndael
[1]. Again, the research of Adrian et al. [1] is slightly out-
dated. Maybe the modified Diffie-Hellman protocol can be
broken nowadays. If the modified protocol can be broken,
further research could be conducted to determine whether
using Rijndael could be used instead of Blowfish to modify
the Diffie-Hellman protocol.

In the previous section, we discussed that considering com-
putation time is important when indication the impact of
a Logjam attack with Active Downgrade. Further research
about this topic would be useful to investigate how big of a
threat this attack is.

4. ACKNOWLEDGMENTS
Thanks to Piet Allersma and Floris Hooijmans for reviewing
this paper.

5. REFERENCES
[1] A. Adrian, M. Cendana, and S. D. H. Permana.

Diffie-hellman key exchange modification using blowfish
algorithm to prevent logjam attack. Journal of
Telecommunication, Electronic and Computer
Engineering, 10(4), October - December 2018.

[2] D. Adrian, K. Bhargavan, Z. Durumeric, P. Gaudry,
M. Green, J. A. Halderman, N. Heninger, D. Springall,
E. Thomé, L. Valenta, B. VanderSloot, E. Wustrow,
S. Zanella-Béguelin, and P. Zimmerman. Imperfect
forward secrecy: How diffie-hellman fails in practice.
22nd ACM Conference on Computer and
Communications Security (CCS ’15), October 2015.

[3] N. K. Valmik and K. V. K. Blowfish algorithm. IOSR
Journal of Computer Engineering, 16(2), 2014.


